MTOR inhibition favors the differentiation of human in vitro-induced regulatory T cell through selective protein synthesis
نویسندگان
چکیده
The immunological composition of the primary cancer, metastatic sites, and stromal tissue determine cancer progression and treatment response. Breast cancers produce cytokines and chemokines that attract and polarize immune cells in a manner that promotes disease progression and metastasis. For example, macrophages are polarized to anti-inflammatory type II tumor activating macrophages (TAMs), and CD4 T cells into tumor promoting, immune suppressing T regulatory cells (Tregs). Studies in mice and humans show that Tregs also are developed when inhibiting the kinase mTOR (mammalian target of rapamycin) via a poorly understood mechanism. mTOR forms two complexes in the cell, mTORC1 and mTORC2, which regulate multiple metabolic processes. In particular, mTORC1 is inhibited by the immunosuppressant rapamycin and stimulates the translation of mRNAs involved in cell growth and proliferation. Protein synthesis is a highly regulated process involving general mRNA and selective mRNA translation. Our hypothesis is that mTOR downregulation alters lymphocyte gene expression by favoring the translation of specific mRNAs required for Treg differentiation. We generated human Tregs induced in culture (iTregs) by mTORC1 inhibition through RAD001 (everolimus), a rapalog used as an anti-cancer drug. By contrast, mTORC1/2 dual inhibitor PP242 blocked the growth of all the lymphocytes, pointing to a specific role of mTORC1 in Treg differentiation. In fact, we found that the proliferation of highly suppressive iTregs requires cotreatment with RAD001 and the cytokine TGFb. Murine models do not require TGFb, suggesting that caution should be used in extending findings from mouse to human Treg studies. Protein synthesis analysis in doubletreated (RAD001+TGFb), control-treated, RAD001and TGFb-treated cells shows that translation is greatly inhibited in the double-treated cells. Genome-wide translation profiling of mRNAs associated with actively translating ribosomes confirmed that only a selective pool of specific mRNAs is translated in the iTreg population. These specific mRNAs may be recruited to ribosome via an mTORindependent mechanism involving PAIP2, and eIF4G adapter protein, and the ribosomal protein S25. Our work indicates the importance of selective translational regulation as an additional determinant of gene expression regulating T cell fate. We suggest that iTreg development is facilitated by selective translation of specific mRNAs whose recruitment to the ribosome is augmented when mTORC1 is inhibited. These findings also suggest that cancer treatments causing an improper balance of mTORC1 inhibition might attenuate the anti-tumor immune response through development of Tregs in the tumor microenvironment
منابع مشابه
P162: Emerging Perspectives on Mtor-Associated Inflammation in Neurodegenerative Diseases
Inflammatory processes have been shown to be involved in development and progression of neurodegenerative diseases. Mammalian target of rapamycin (mTOR) involves in various cellular processes including autophagy, apoptosis and energy metabolism. Recently, studies have been shown an association between mTOR pathway and inflammation, supporting the role of the pathway in the pathogenesis of infla...
متن کاملRapamycin Inhibits Expansion of Cord Blood Derived NK and T Cell
Background: The mammalian target of rapamycin (mTOR) is important in hematopoiesis. Despite the central role of mTOR in regulating the differentiation of immune cells, the effect of mTOR function on cord blood mononuclear cells is yet to be defined. Objectives: To evaluate the effect of mTOR inhibition, using rapamycin on the proliferation and apoptosis of cord blood mononuclear cells, as well ...
متن کاملP-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction
Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...
متن کاملAll PI3Kinase signaling is not mTOR: dissecting mTOR-dependent and independent signaling pathways in T cells
The mechanistic target of rapamycin (mTOR) is emerging as playing a central role in regulating T cell activation, differentiation, and function. mTOR integrates diverse signals from the immune microenvironment to shape the outcome of T cell receptor (TCR) antigen recognition. Phosphatidylinositol 3-kinase (PI3K) enzymes are critical mediators of T cell activation through their generation of the...
متن کاملNegative regulation of mTOR activation by diacylglycerol kinases.
The engagement of TCR induces T-cell activation, which initiates multiple characteristic changes such as increase in cell size, cell division, and the production of cytokines and other effector molecules. The mammalian target of rapamycin (mTOR) regulates protein synthesis, transcription, cell survival, and autophagy. Critical roles of mTOR in T-cell activation and effector/memory differentiati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2015